An efficient monolithic solution scheme for FE2 problems
نویسندگان
چکیده
The FE2 method is a very flexible but computationally expensive tool for multiscale simulations. In conventional implementations, the microscopic displacements are iteratively solved within each macroscopic iteration loop, although strains imposed as boundary conditions at micro-scale only represent estimates. order to reduce number of iterations, present contribution presents monolithic scheme, which and macro-scale in common Newton–Raphson loop. this case, linear system equations by static condensation, so that limited modifications conventional, staggered scheme necessary. proposed algorithm implemented into commercial FE code Abaqus. Benchmark examples demonstrate saves up ? 60% computational costs.
منابع مشابه
An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملAn efficient approach for solving layout problems
This paper offers an approach that could be useful for diverse types of layout problems or even area allocation problems. By this approach there is no need to large number of discrete variables and only by few continues variables large-scale layout problems could be solved in polynomial time. This is resulted from dividing area into discrete and continuous dimensions. Also defining decision var...
متن کاملA new monolithic Newton-multigrid-based FEM solution scheme for large strain dynamic poroelasticity problems
This paper presents a new efficient monolithic finite element solution scheme to treat the set of PDEs governing a two-dimensional, biphasic, saturated TPM model with intrinsically coupled and incompressible solid and fluid constituents for infinitesimal and large elastic deformation. Our approach, which inherits some of its techniques from CFD, is characterized by the following aspects: (1) It...
متن کاملAn Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme
We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2021
ISSN: ['0045-7825', '1879-2138']
DOI: https://doi.org/10.1016/j.cma.2021.113886